ORIE 5355

Lecture 10: Algorithmic pricing: price
differentiation, competition, and practice
Nikhil Garg

Announcements & reminders

* HW 3 posted

* In person pricing ethics discussion 10/22! Important

* PollEv.com/nikhilgarg713

https://pollev.com/nikhilgarg713
https://pollev.com/nikhilgarg713

Pricing so far

* Given a demand distribution d(p) = 1 —
F(p), how to calculate optimal prices
arg max [p x d(p)]

* How to estimate demand distributions,
potentially as a function of covariates

Revenue: p(1 — F(p))
o —_ N w N (8)] (o)} ~l

=
(@)

o
®

<
o

©
~

o

Estimated demand: 1 — I:'(p)
N

o
o

e Combined

—— Num Samples = 100
—— Num Samples = 1000
—— Num Samples = 4000

Capacity constraints and pricing over time

* Dynamic programming approach 6 \

* If you have T time periods to sell an item 5

and want to maximize expected revenue, 8,
what prices p; ...pt do you set? o
3
* Key idea: optimize backwards
2
* First decide price pt 5 - n - - o
* Then decide price pt_4 Time

e Posted additional notes; come to OHs for
additional questions

Vo
Cop o e r
604[" MGXM\ ze exf:chcl evenve. sthn, at time w
by setbrg geres™r, . e
£ hawe ur\%\ e T-1=2 h &l i+

(P L C{l\ 1tem [evence i€

“}"M'(' o c-dld-o
hne
.?Co\ﬁﬁ e
= s & +=|
\/0 & (> (CZ“_ v 0 / e
ul\ at ¥=1

(=il P@>,[O + 4(9)@ L

Prob. don el i

ar e O
(%A(@ d)e &

— >

Q* MP}» | dfs)p ¢ ‘/ - d(k)) O |
| .. o J
dint ll at
tre
t=T-1=3
g ¥ ¢

T—-\= CJ O gl thom
MW T-\=3 as f;@}« A,
Then:
U’H - U&: &(Peb%* P30) O

Vo = d(r)e (i) V.
V, = MPDPI * ([_A(plD V,

——

Solving the example: “Bellman equation”

* |f | don’t sell today: (happens with probability 1 — d(p;))

 Then my revenue today is 0
* Then the expected revenue tomorrow is: p,d(p-,)

Do | sell today? Total revenue p2*d{p2)

* |f | do sell today: (happens with probability d(p;))
* My revenue today is p;
* Then the expected revenue tomorrow is 0 Totalrevenue

* So, my overall expected revenue is:

d(py)(p; +0) + (1 — d(p1))(0 + pzd(pz))
* p, easy to solve — does not depend on p,

* Given p,, the above revenue function is only a
function of p; => Can optimize p,

Do | sell day 07 Do | sell day 17 Do | sell day 27 Do | sell day 37

Bellman equation generally

Total revenue p1 Total revenue p2 Total revenue p3 Total revenue p4

* You can generalize this idea to selling any number of items
sequentially for T days

 Start from Day T: If you still have an item, do single-shot maximization

e Day T — 1: Given Day T price, you know expected reward if you still
have an item to be sold after Day T — 1. And so, you can calculate
optimal price for Day T — 1.

* Now, you have the expected reward if you still have an item to be sold
afterDay T — 2...

* Allthe wayuntilDay T = 1

More Bellman equation

* Let V; denote: “Expected profit if | still have an item to
sell on day t”

Vp = pr X d(pr) 2
Vi1 = [pr-1 X d(pr-p)] + (1 — d(PT—1)) Vr

 Above means: “Value today is revenue today if | sell the

Price
S

3
2

item today, or tomorrow’s expected revenue if | don’t e w w @ W
. Time
sell the item today”

* For each t, given I/, ; we can calculate optimal price p;
* Keep iterating until you have prices p; ... pr
* Resulting V; is my expected revenue given these prices

Bellman equations: a general idea

e Constructing a tree to reason about what happens tomorrow, and then
iterating backwards, is a powerful + flexible algorithmic technique:

“dynamic programming”
 Example: What if you have 5 copies of each item?

Let k denote how many copies of the item | have. Then:
Vio = O forallt

Vik = rgka d(pt,k)[pt,k + Vt+1,k—1] + (1 - d(pt,k)) Vi+1k

If | sell an item today: Revenue today, plus future revenue from 1 less item
If | don’t sell: Future revenue from same number of items

Competing effects: Now, less capacity over time = prices should go up (but less time
to sell, so prices should go down).

Capacity constraints + over-time pricing in
practice

* Dynamic programs/bellman equations are powerful, but often the
real world is too complicated
* Uncertainty in future capacity
* Future actions of competitors
* Future demand distributions
e “Long time horizons” (T is big)

* In theory, dynamic programming can handle the above. In practice,
hard to know how to calculate future value.

Approximating dynamic programming

* In the recommendations module, we created “score”(or “index”) functions:
e Consider future users, through capacity and avg ratings terms in the score function

* With 1 item: V., ; represents my “opportunity cost” if | sell an item today
that | could have sold tomorrow.

Also interpret as “safety net”: if fail to sell the item today, still earn V. in expectation

* Instead of doing a full Bellman equation, estimate V., ;through some other
means, then plug into the decision problem for today (finding price py)
* Can construct it like we did score functions for recommendations
* AlphaGo to play Go: V;, { is partially estimated via a neural network

Pricing with capacity summary

e Just like in recommendations, have to think about potential future
demand

* Here, potential future demand lets us be “more aggressive” by pricing
higher today

* If | can summarize future revenue (V..) effectively, then | can
optimize today’s prices

* Dynamic programming: start from the end!

* We assumed that customers can’t strategize on when to come — not
true!

Questions?

Plan for rest of today

So far:

* Alittle bit on using side-information (user and item vectors) to estimate
personalized demand

* Capacity constraints over time

Many assumptions from so far:
* Only one item

* Allowed to explicitly give different prices to different users
* Or give different prices over time

* No competition from other sellers
* No over-time dynamics

We'll peel back some more of these assumptions today

Selling multiple kinds of items

\ 00O ¥.434%8 6:24

Example il !

|
The Grove >

>s Angeles County o
Museum of Art =

La Brea Tar
=~ Pits & Nluseum

* Ride-hailing offers different “tiers” of service
* UberPool cheaper than UberX

 Also costs less for the platform -' el
* How do we price these items together? e
 What happens if we do simple revenue maximizing ; ””'“
price for each item separately? D % %
* What happens if we make UberPool cheaper? S fae Sese

Android Pay

CONFIRM UBERX
< O O

Motivation

Motivation 1:

You simply have multiple kinds of products to sell. Different types of clothes,
laptops, airline seats, furniture, etc.

Motivation 2:
 Earlier: personalized pricing with covariates

* Challenge: Often you can’t (technically, ethically, Iegally, ..) give different
prices for the same product to different users based on covariates

e Now: Different “tiers” of service.

* High quallty First class seats, faster service in Uber/Lyft, luxury goods versions,
get item “now”

* Lower quality: Economy seats, UberPool/Lyft Wait and Save, ...

=> Purposely create tiers of service to earn more money from richer
people while earning something from others

Challenges

e Just like pricing over time, now prices for the 2 items depend on each
other

Unlike pricing to different demographic segments without capacity constraints

e Cannibalization: Customers who would have bought the luxury good
instead buy the cheaper good because it is available

2-item user behavior model

e Suppose you're selling 2 types of items

e Each person will buy at most one item
* Each person has a private valuation v, foritem 1 and v, for item 2

* Suppose you offer the items at price p; and p,, respectively

* How does the person make their decision?
Utility from item j at price p; is v; — p;

. .
Pers.on L buys Assumption on customer’s “choice
Neither item if v; < p;and v, < p, model.” More generally, customer

ltem 1 if V1 = D1 and Vi —P1 = Vy — Dy could buy randomly, with choice

ltem 2 if v, > D, and v, — D, > 3 probabilities tf;at d;pend on
Jj T Fj

In Mmore detail

How does the person make their decision? Person i buys

Neither itemif v; < p; and v, < p,
ltem 1lifv, = p;andv, —p;y =2 v, — Py
ltem 2ifv, = p,andv, —p, = v, — Py

Vo
Buj§ em
2
2
No 13uys
@Mfd‘ﬂ& em |
@ Y,

Revenue in 2 item model

For a set of prices (p1,1>), let

d, (py, p,) be fraction of people who buy item 1
(Yellow Region)

d,(p4, p,) be fraction of people who buy item 2
(Blue Region)

Then, revenue is:
py X d1(p1,02) + p2 X da(p1,p2)

Given functions d4, d,, can solve for optimal
prices

For a set of prices (py, 1), let

d;(py,p,) be fraction of people who buy item 1
(Yellow Region)

d,(pq, ;) be fraction of people who buy item 2
(Blue Region)

Then, revenue is:
p1 X dq(py,p2) + P2 X dy(py, p2)

Given functions d;, d,, can solve for optimal
prices

Cannibalization

Now, each price affects other item. \Vy
Revenue: p; X di(pq,p2) + p2 X dz(p1,02)
Suppose decrease p; (make item 1 cheaper)
Then: Py
* Earn less money in yellow region 1

* Yellow region becomes bigger
White region becomes smaller T

Blue region becomes smaller |

Bujg 1N
P
No 13uys
(’pm{'%ﬂ& e |
® Y

Demand estimation with multiple items

* With a single item, we suggested machine learning approach to
estimate: d(p,x) = 1 —F,x (p | X = x)

* Assume we have user [with covariates x;
* Now, would need to estimate d,(p4, p,, x;) and d, (p4, P, x;)
e Gets very hard, very quickly

 Approach 1: Use a multi-class classification algorithm g(p, p,, x;)
[Buy nothing, buy item 1, buy item 2] and then extract class probabilities
(sci-kit learn: use predict_proba with any multi-class classifier)

e Approach 2: (Extend idea from previous class)
* Use user and item vectors, i.e., (D1, P2, U; * Witem 1, Ui * Witerm 2)

Sidenote: Substitutes and complements

* So far: motivation -- we have multiple products to sell, that appeal to
different customers

“cheaper” and “more expensive” product
* ltems are “substitutes”: people only buy at most one kind of item

* Sometimes, items are “complements” — buying one item makes the
other item more attractive

e Soda + popcorn at movie theater
* iPhone and Macbook and Apple Watch and Apple TV and ...

* Then, reducing one item’s price might induce you to buy more overall
* Anitem is a “loss leader”

Putting pieces together: class
competition

So far we’ve covered

 Recommendation systems

* Given past user and item data, predicting how much each user would like
each item

* How to turn these predictions into recommendations (with capacity
constraints)
* Pricing
* Single item revenue maximization

* Estimating demand at each price, potentially with covariates
* Potentially with multiple items, and with using user and item vectors

* Pricing over time with capacity constraints

* Pricing multiple items

Overview: Real-life algorithmic pricing

* You and a single competitor (your classmates) each are selling two
types of items, Book A and Book B.
* (Potentially: suppose you get K copies of each item every 10 steps)

e A customer walks in and you observe some personal data

* Just demographic covariates
* Demographic covariates & user vector trained using their past experiences

* You and your competitor post prices for each item
* The customer at most 1 item and leaves
* Repeat for many customers over time

Basic case

* For now, let’s ignore competition

* For each user, you have either just demographic covariates x; or also
a trained user vector u; from their past interactions on your site

* You would predict demand for each item, d (p4, pg x;,1;) and

d,(pa, e, x;, u;) for each set of prices (p4, P5)
* Your choice on how to estimate this demand

* What do you do for customers with no user vector u;?

 Set prices to maximize your expected revenue

Complication 1: Capacity constraints

* Now, have K copies of each item for each T=10 customers.

* Now, the price that you set for each item should depend on
opportunity cost: what if you can sell that item to a different
customer in the future?

* 3-d Bellman equation: time, capacity of Book A, capacity of Book B
e Set up your Bellman equation:
Vt,kA,kB — A +B + C
A: If | sell Book A today: Revenue today, plus future revenue from 1 less Book A

B: If | sell Book B today : Revenue today, plus future revenue from 1 less Book B
C: If | don’t sell anything: future revenue from same number of copies

How to calculate future revenue?

* As before, future revenue depends on future prices that you set

e ...Think about prices you’d set on last day T-1=10
* For each combination of capacities left k4, kg

 Complication: onday t < T — 1 you don’t yet know the customer
Xr_1,Ur_41 that will show up on the lastday T — 1!

* You only know customer who has shown up on day t

* When calculating future expected value Vi ; i, ., you need to
consider the distribution of customers that cou/c/Bshow up
e Use training data to consider possible customers that could show up
* Then calculate the prices that you would show each of them

Complication: Competition

* You and your opponent both do the same thing, and calculate the
exact same prices p,, pp at the current time step

* Your opponent is clever, and so decides to undercut you slightly, and
so sets prices p, — $0.01,pp — $0.01

e ...but you’re cleverer, and know your opponent will do this, and so
you set prices p, — $0.02,pp — $0.02

* There’s now a game theory component: you need to anticipate what
your opponent will do when setting prices

* More complicated: it’s a repeated setting
* You can learn parameters for how your opponent behaves

Questions?

	Slide 1: ORIE 5355 Lecture 10: Algorithmic pricing: price differentiation, competition, and practice
	Slide 2: Announcements & reminders
	Slide 3: Pricing so far
	Slide 4: Capacity constraints and pricing over time
	Slide 5
	Slide 6
	Slide 7: Solving the example: “Bellman equation”
	Slide 8: Bellman equation generally
	Slide 9: More Bellman equation
	Slide 10: Bellman equations: a general idea
	Slide 11: Capacity constraints + over-time pricing in practice
	Slide 12: Approximating dynamic programming
	Slide 13: Pricing with capacity summary
	Slide 14: Questions?
	Slide 15: Plan for rest of today
	Slide 16: Selling multiple kinds of items
	Slide 17: Example
	Slide 18: Motivation
	Slide 19: Challenges
	Slide 20: 2-item user behavior model
	Slide 21: In more detail
	Slide 22: Revenue in 2 item model
	Slide 23: Cannibalization
	Slide 24: Demand estimation with multiple items
	Slide 25: Sidenote: Substitutes and complements
	Slide 26: Putting pieces together: class competition
	Slide 27: So far we’ve covered
	Slide 28: Overview: Real-life algorithmic pricing
	Slide 29: Basic case
	Slide 30: Complication 1: Capacity constraints
	Slide 31: How to calculate future revenue?
	Slide 32: Complication: Competition
	Slide 33: Questions?

