
ORIE 5355
Lecture 10: Algorithmic pricing: price

differentiation, competition, and practice
Nikhil Garg

Announcements & reminders

• HW 3 posted

• In person pricing ethics discussion 10/22! Important

• PollEv.com/nikhilgarg713

https://pollev.com/nikhilgarg713
https://pollev.com/nikhilgarg713

Pricing so far

• Given a demand distribution d p = 1 −
𝐹 𝑝 , how to calculate optimal prices

arg max
p

p × d p

• How to estimate demand distributions,
potentially as a function of covariates

Capacity constraints and pricing over time

• Dynamic programming approach

• If you have T time periods to sell an item
and want to maximize expected revenue,
what prices p1 … pT do you set?

• Key idea: optimize backwards
• First decide price pT

• Then decide price pT−1

• Posted additional notes; come to OHs for
additional questions

Solving the example: “Bellman equation”

• If I don’t sell today: (happens with probability 1 − d p1)
• Then my revenue today is 0
• Then the expected revenue tomorrow is: p2d p2

• If I do sell today: (happens with probability d p1)
• My revenue today is p1

• Then the expected revenue tomorrow is 0

• So, my overall expected revenue is:

d p1 p1 + 0 + 1 − d p1 0 + p2d p2

• p2 easy to solve – does not depend on p1

• Given p2, the above revenue function is only a
function of p1 => Can optimize p1

Bellman equation generally

• You can generalize this idea to selling any number of items
sequentially for T days

• Start from Day T: If you still have an item, do single-shot maximization

• Day T − 1: Given Day T price, you know expected reward if you still
have an item to be sold after Day T − 1. And so, you can calculate
optimal price for Day T − 1.

• Now, you have the expected reward if you still have an item to be sold
after Day T − 2…

• All the way until Day T = 1

More Bellman equation

• Let Vt denote: “Expected profit if I still have an item to
sell on day t”

VT = 𝑝𝑇 × 𝑑 𝑝𝑇

VT−1 = 𝑝𝑇−1 × 𝑑 𝑝𝑇−1 + 1 − 𝑑 𝑝𝑇−1 𝑉𝑇

• Above means: “Value today is revenue today if I sell the
item today, or tomorrow’s expected revenue if I don’t
sell the item today”

• For each t, given 𝑉𝑡+1 we can calculate optimal price 𝑝𝑡

• Keep iterating until you have prices 𝑝1 … 𝑝𝑇

• Resulting V1 is my expected revenue given these prices

Bellman equations: a general idea

• Constructing a tree to reason about what happens tomorrow, and then
iterating backwards, is a powerful + flexible algorithmic technique:
“dynamic programming”

• Example: What if you have 5 copies of each item?
Let k denote how many copies of the item I have. Then:

Vt,0 = 0 for all t

Vt,k = max
𝑝𝑡,𝑘

𝑑 𝑝𝑡,𝑘 𝑝𝑡,𝑘 + Vt+1,k−1 + 1 − 𝑑 𝑝𝑡,𝑘 Vt+1,k

If I sell an item today: Revenue today, plus future revenue from 1 less item
If I don’t sell: Future revenue from same number of items
Competing effects: Now, less capacity over time → prices should go up (but less time
to sell, so prices should go down).

Capacity constraints + over-time pricing in
practice
• Dynamic programs/bellman equations are powerful, but often the

real world is too complicated
• Uncertainty in future capacity

• Future actions of competitors

• Future demand distributions

• “Long time horizons” (T is big)

• In theory, dynamic programming can handle the above. In practice,
hard to know how to calculate future value.

Approximating dynamic programming

• In the recommendations module, we created “score”(or “index”) functions:
• Consider future users, through capacity and avg ratings terms in the score function

• With 1 item: Vt+1 represents my “opportunity cost” if I sell an item today
that I could have sold tomorrow.

Also interpret as “safety net”: if fail to sell the item today, still earn Vt+1 in expectation

• Instead of doing a full Bellman equation, estimate Vt+1through some other
means, then plug into the decision problem for today (finding price pt)
• Can construct it like we did score functions for recommendations

• AlphaGo to play Go: Vt+1 is partially estimated via a neural network

Pricing with capacity summary

• Just like in recommendations, have to think about potential future
demand

• Here, potential future demand lets us be “more aggressive” by pricing
higher today

• If I can summarize future revenue (Vt+1) effectively, then I can
optimize today’s prices

• Dynamic programming: start from the end!

• We assumed that customers can’t strategize on when to come – not
true!

Questions?

Plan for rest of today

So far:
• A little bit on using side-information (user and item vectors) to estimate

personalized demand
• Capacity constraints over time

Many assumptions from so far:
• Only one item
• Allowed to explicitly give different prices to different users

• Or give different prices over time
• No competition from other sellers
• No over-time dynamics

We’ll peel back some more of these assumptions today

Selling multiple kinds of items
Price differentiation

Example

• Ride-hailing offers different “tiers” of service

• UberPool cheaper than UberX
• Also costs less for the platform

• How do we price these items together?
• What happens if we do simple revenue maximizing

price for each item separately?

• What happens if we make UberPool cheaper?

Motivation

Motivation 1:
You simply have multiple kinds of products to sell. Different types of clothes,
laptops, airline seats, furniture, etc.

Motivation 2:
• Earlier: personalized pricing with covariates
• Challenge: Often you can’t (technically, ethically, legally, …) give different

prices for the same product to different users based on covariates
• Now: Different “tiers” of service.

• High quality: First class seats, faster service in Uber/Lyft, luxury goods versions,
get item “now”

• Lower quality: Economy seats, UberPool/Lyft Wait and Save, …

=> Purposely create tiers of service to earn more money from richer
people while earning something from others

Challenges

• Just like pricing over time, now prices for the 2 items depend on each
other

Unlike pricing to different demographic segments without capacity constraints

• Cannibalization: Customers who would have bought the luxury good
instead buy the cheaper good because it is available

2-item user behavior model

• Suppose you’re selling 2 types of items

• Each person will buy at most one item
• Each person has a private valuation 𝑣1 for item 1 and 𝑣2 for item 2

• Suppose you offer the items at price 𝑝1 and 𝑝2, respectively

• How does the person make their decision?
Utility from item 𝑗 at price 𝑝𝑗 is 𝑣𝑗 − 𝑝𝑗

• Person 𝑖 buys
Neither item if 𝑣1 < 𝑝1 and 𝑣2 < 𝑝2

Item 1 if 𝑣1 ≥ 𝑝1 and 𝑣1 − 𝑝1 ≥ 𝑣2 − 𝑝2

Item 2 if 𝑣2 ≥ 𝑝2 and 𝑣2 − 𝑝2 ≥ 𝑣1 − 𝑝1

Assumption on customer’s “choice
model.” More generally, customer
could buy randomly, with choice
probabilities that depend on

𝑣𝑗 − 𝑝𝑗

In more detail

How does the person make their decision? Person 𝑖 buys
Neither item if 𝑣1 < 𝑝1 and 𝑣2 < 𝑝2

Item 1 if 𝑣1 ≥ 𝑝1 and 𝑣1 − 𝑝1 ≥ 𝑣2 − 𝑝2

Item 2 if 𝑣2 ≥ 𝑝2 and 𝑣2 − 𝑝2 ≥ 𝑣1 − 𝑝1

Revenue in 2 item model

For a set of prices (𝑝1, 𝑝2), let
d1 𝑝1, 𝑝2 be fraction of people who buy item 1

(Yellow Region)

d2 𝑝1, 𝑝2 be fraction of people who buy item 2
(Blue Region)

Then, revenue is:
𝑝1 × d1 𝑝1, 𝑝2 + 𝑝2 × d2 𝑝1, 𝑝2

Given functions d1, d2, can solve for optimal
prices

Cannibalization

Now, each price affects other item.

Revenue: 𝑝1 × d1 𝑝1, 𝑝2 + 𝑝2 × d2 𝑝1, 𝑝2

Suppose decrease 𝑝1 (make item 1 cheaper)

Then:

• Earn less money in yellow region ↓

• Yellow region becomes bigger

White region becomes smaller ↑

Blue region becomes smaller ↓

Demand estimation with multiple items

• With a single item, we suggested machine learning approach to
estimate: d p, x ≝ 1 − 𝐹𝑝|𝑋 𝑝 𝑋 = 𝑥)

• Assume we have user 𝑖 with covariates 𝑥𝑖

• Now, would need to estimate d1 𝑝1, 𝑝2, 𝑥𝑖 and d2 𝑝1, 𝑝2, 𝑥𝑖

• Gets very hard, very quickly

• Approach 1: Use a multi-class classification algorithm 𝑔 𝑝1, 𝑝2, 𝑥𝑖
[Buy nothing, buy item 1, buy item 2] and then extract class probabilities
(sci-kit learn: use predict_proba with any multi-class classifier)

• Approach 2: (Extend idea from previous class)
• Use user and item vectors, i.e., p1, p2, 𝑢𝑖 ⋅ 𝑤item 1, 𝑢𝑖 ⋅ 𝑤item 2

Sidenote: Substitutes and complements

• So far: motivation -- we have multiple products to sell, that appeal to
different customers

“cheaper” and “more expensive” product

• Items are “substitutes”: people only buy at most one kind of item

• Sometimes, items are “complements” – buying one item makes the
other item more attractive
• Soda + popcorn at movie theater

• iPhone and Macbook and Apple Watch and Apple TV and …

• Then, reducing one item’s price might induce you to buy more overall
• An item is a “loss leader”

Putting pieces together: class
competition

So far we’ve covered

• Recommendation systems
• Given past user and item data, predicting how much each user would like

each item

• How to turn these predictions into recommendations (with capacity
constraints)

• Pricing
• Single item revenue maximization

• Estimating demand at each price, potentially with covariates
• Potentially with multiple items, and with using user and item vectors

• Pricing over time with capacity constraints

• Pricing multiple items

Overview: Real-life algorithmic pricing

• You and a single competitor (your classmates) each are selling two
types of items, Book A and Book B.
• (Potentially: suppose you get K copies of each item every 10 steps)

• A customer walks in and you observe some personal data
• Just demographic covariates

• Demographic covariates & user vector trained using their past experiences

• You and your competitor post prices for each item

• The customer at most 1 item and leaves

• Repeat for many customers over time

Basic case

• For now, let’s ignore competition

• For each user, you have either just demographic covariates 𝑥𝑖 or also
a trained user vector 𝑢𝑖 from their past interactions on your site

• You would predict demand for each item, 𝑑1(𝑝𝐴, 𝑝𝐵 𝑥𝑖 , 𝑢𝑖) and
𝑑2(𝑝𝐴, 𝑝𝐵 , 𝑥𝑖 , 𝑢𝑖) for each set of prices (𝑝𝐴, 𝑝𝐵)
• Your choice on how to estimate this demand

• What do you do for customers with no user vector 𝑢𝑖?

• Set prices to maximize your expected revenue

Complication 1: Capacity constraints

• Now, have K copies of each item for each T=10 customers.

• Now, the price that you set for each item should depend on
opportunity cost: what if you can sell that item to a different
customer in the future?

• 3-d Bellman equation: time, capacity of Book A, capacity of Book B

• Set up your Bellman equation:
Vt,k𝐴,k𝐵

= 𝐴 + 𝐵 + 𝐶

A: If I sell Book A today: Revenue today, plus future revenue from 1 less Book A

B: If I sell Book B today : Revenue today, plus future revenue from 1 less Book B

C: If I don’t sell anything: future revenue from same number of copies

How to calculate future revenue?

• As before, future revenue depends on future prices that you set

• …Think about prices you’d set on last day T-1=10
• For each combination of capacities left k𝐴, k𝐵

• Complication: on day t < T − 1 you don’t yet know the customer
𝑥𝑇−1, 𝑢𝑇−1 that will show up on the last day T − 1!
• You only know customer who has shown up on day t

• When calculating future expected value Vt+1,k𝐴,k𝐵
, you need to

consider the distribution of customers that could show up
• Use training data to consider possible customers that could show up
• Then calculate the prices that you would show each of them

Complication: Competition

• You and your opponent both do the same thing, and calculate the
exact same prices 𝑝𝐴, 𝑝𝐵 at the current time step

• Your opponent is clever, and so decides to undercut you slightly, and
so sets prices 𝑝𝐴 − $0.01, 𝑝𝐵 − $0.01

• …but you’re cleverer, and know your opponent will do this, and so
you set prices 𝑝𝐴 − $0.02, 𝑝𝐵 − $0.02

• There’s now a game theory component: you need to anticipate what
your opponent will do when setting prices

• More complicated: it’s a repeated setting
• You can learn parameters for how your opponent behaves

Questions?

	Slide 1: ORIE 5355 Lecture 10: Algorithmic pricing: price differentiation, competition, and practice
	Slide 2: Announcements & reminders
	Slide 3: Pricing so far
	Slide 4: Capacity constraints and pricing over time
	Slide 5
	Slide 6
	Slide 7: Solving the example: “Bellman equation”
	Slide 8: Bellman equation generally
	Slide 9: More Bellman equation
	Slide 10: Bellman equations: a general idea
	Slide 11: Capacity constraints + over-time pricing in practice
	Slide 12: Approximating dynamic programming
	Slide 13: Pricing with capacity summary
	Slide 14: Questions?
	Slide 15: Plan for rest of today
	Slide 16: Selling multiple kinds of items
	Slide 17: Example
	Slide 18: Motivation
	Slide 19: Challenges
	Slide 20: 2-item user behavior model
	Slide 21: In more detail
	Slide 22: Revenue in 2 item model
	Slide 23: Cannibalization
	Slide 24: Demand estimation with multiple items
	Slide 25: Sidenote: Substitutes and complements
	Slide 26: Putting pieces together: class competition
	Slide 27: So far we’ve covered
	Slide 28: Overview: Real-life algorithmic pricing
	Slide 29: Basic case
	Slide 30: Complication 1: Capacity constraints
	Slide 31: How to calculate future revenue?
	Slide 32: Complication: Competition
	Slide 33: Questions?

