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Announcements & reminders

• HW 3 posted

• In person pricing ethics discussion 10/22! Important

• PollEv.com/nikhilgarg713

https://pollev.com/nikhilgarg713
https://pollev.com/nikhilgarg713


Pricing so far

• Given a demand distribution d p = 1 −
𝐹 𝑝 , how to calculate optimal prices

arg max
p

p × d p

• How to estimate demand distributions, 
potentially as a function of covariates



Capacity constraints and pricing over time

• Dynamic programming approach

• If you have T time periods to sell an item 
and want to maximize expected revenue, 
what prices p1 … pT do you set?

• Key idea: optimize backwards
• First decide price pT

• Then decide price pT−1

• Posted additional notes; come to OHs for 
additional questions







Solving the example: “Bellman equation”

• If I don’t sell today: (happens with probability 1 − d p1 )
• Then my revenue today is 0
• Then the expected revenue tomorrow is: p2d p2

• If I do sell today: (happens with probability d p1 )
• My revenue today is p1

• Then the expected revenue tomorrow is 0

• So, my overall expected revenue is:

d p1 p1 + 0 + 1 − d p1 0 + p2d p2

• p2 easy to solve – does not depend on p1

• Given p2, the above revenue function is only a 
function of p1 => Can optimize p1



Bellman equation generally

• You can generalize this idea to selling any number of items 
sequentially for T days

• Start from Day T: If you still have an item, do single-shot maximization

• Day T − 1: Given Day T price, you know expected reward if you still 
have an item to be sold after Day T − 1. And so, you can calculate 
optimal price for Day T − 1. 

• Now, you have the expected reward if you still have an item to be sold 
after Day T − 2… 

• All the way until Day T = 1



More Bellman equation

• Let Vt denote: “Expected profit if I still have an item to 
sell on day t”

VT = 𝑝𝑇 × 𝑑 𝑝𝑇

VT−1 = 𝑝𝑇−1 × 𝑑 𝑝𝑇−1 + 1 − 𝑑 𝑝𝑇−1 𝑉𝑇

• Above means: “Value today is revenue today if I sell the 
item today, or tomorrow’s expected revenue if I don’t 
sell the item today” 

• For each t, given 𝑉𝑡+1 we can calculate optimal price 𝑝𝑡

• Keep iterating until you have prices 𝑝1 … 𝑝𝑇

• Resulting V1 is my expected revenue given these prices



Bellman equations: a general idea

• Constructing a tree to reason about what happens tomorrow, and then 
iterating backwards, is a powerful + flexible algorithmic technique: 
“dynamic programming”

• Example: What if you have 5 copies of each item? 
Let k denote how many copies of the item I have. Then:

Vt,0 = 0 for all t

Vt,k = max
𝑝𝑡,𝑘

𝑑 𝑝𝑡,𝑘 𝑝𝑡,𝑘 + Vt+1,k−1 + 1 − 𝑑 𝑝𝑡,𝑘 Vt+1,k

If I sell an item today: Revenue today, plus future revenue from 1 less item
If I don’t sell: Future revenue from same number of items
Competing effects: Now, less capacity over time → prices should go up (but less time 
to sell, so prices should go down).



Capacity constraints + over-time pricing in 
practice
• Dynamic programs/bellman equations are powerful, but often the 

real world is too complicated
• Uncertainty in future capacity

• Future actions of competitors

• Future demand distributions

• “Long time horizons” (T is big)

• In theory, dynamic programming can handle the above. In practice, 
hard to know how to calculate future value.



Approximating dynamic programming

• In the recommendations module, we created “score”(or “index”) functions:
• Consider future users, through capacity and avg ratings terms in the score function

• With 1 item: Vt+1 represents my “opportunity cost” if I sell an item today 
that I could have sold tomorrow.

Also interpret as “safety net”: if fail to sell the item today, still earn Vt+1 in expectation

• Instead of doing a full Bellman equation, estimate Vt+1through some other 
means, then plug into the decision problem for today (finding price pt)
• Can construct it like we did score functions for recommendations

• AlphaGo to play Go: Vt+1 is partially estimated via a neural network



Pricing with capacity summary

• Just like in recommendations, have to think about potential future 
demand

• Here, potential future demand lets us be “more aggressive” by pricing 
higher today

• If I can summarize future revenue (Vt+1) effectively, then I can 
optimize today’s prices 

• Dynamic programming: start from the end!

• We assumed that customers can’t strategize on when to come – not 
true!



Questions?



Plan for rest of today

So far:
• A little bit on using side-information (user and item vectors) to estimate 

personalized demand
• Capacity constraints over time

Many assumptions from so far:
• Only one item
• Allowed to explicitly give different prices to different users

• Or give different prices over time
• No competition from other sellers
• No over-time dynamics

We’ll peel back some more of these assumptions today



Selling multiple kinds of items
Price differentiation



Example

• Ride-hailing offers different “tiers” of service

• UberPool cheaper than UberX
• Also costs less for the platform

• How do we price these items together?
• What happens if we do simple revenue maximizing 

price for each item separately?

• What happens if we make UberPool cheaper?



Motivation

Motivation 1:
You simply have multiple kinds of products to sell. Different types of clothes, 
laptops, airline seats, furniture, etc.

Motivation 2:
• Earlier: personalized pricing with covariates
• Challenge: Often you can’t (technically, ethically, legally, …) give different 

prices for the same product to different users based on covariates
• Now: Different “tiers” of service.

• High quality: First class seats, faster service in Uber/Lyft, luxury goods versions, 
get item “now”

• Lower quality: Economy seats, UberPool/Lyft Wait and Save, …

=> Purposely create tiers of service to earn more money from richer 
people while earning something from others



Challenges

• Just like pricing over time, now prices for the 2 items depend on each 
other

Unlike pricing to different demographic segments without capacity constraints 

• Cannibalization: Customers who would have bought the luxury good 
instead buy the cheaper good because it is available



2-item user behavior model

• Suppose you’re selling 2 types of items

• Each person will buy at most one item
• Each person has a private valuation 𝑣1 for item 1 and 𝑣2 for item 2

• Suppose you offer the items at price 𝑝1 and 𝑝2, respectively

• How does the person make their decision?
Utility from item 𝑗 at price 𝑝𝑗 is 𝑣𝑗 − 𝑝𝑗

• Person 𝑖 buys
Neither item if 𝑣1 < 𝑝1 and 𝑣2 < 𝑝2

Item 1 if 𝑣1 ≥ 𝑝1 and 𝑣1 − 𝑝1 ≥ 𝑣2 − 𝑝2

Item 2 if 𝑣2 ≥ 𝑝2 and 𝑣2 − 𝑝2 ≥ 𝑣1 − 𝑝1

Assumption on customer’s “choice 
model.” More generally, customer 
could buy randomly, with choice 
probabilities that depend on 

𝑣𝑗 − 𝑝𝑗



In more detail

How does the person make their decision? Person 𝑖 buys
Neither item if 𝑣1 < 𝑝1 and 𝑣2 < 𝑝2

Item 1 if 𝑣1 ≥ 𝑝1 and 𝑣1 − 𝑝1 ≥ 𝑣2 − 𝑝2

Item 2 if 𝑣2 ≥ 𝑝2 and 𝑣2 − 𝑝2 ≥ 𝑣1 − 𝑝1



Revenue in 2 item model

For a set of prices (𝑝1, 𝑝2), let 
d1 𝑝1, 𝑝2  be fraction of people who buy item 1

(Yellow Region)

d2 𝑝1, 𝑝2  be fraction of people who buy item 2
(Blue Region)

Then, revenue is:
𝑝1 × d1 𝑝1, 𝑝2 + 𝑝2 × d2 𝑝1, 𝑝2

 

Given functions d1, d2, can solve for optimal 
prices



Cannibalization

Now, each price affects other item.

Revenue: 𝑝1 × d1 𝑝1, 𝑝2 +  𝑝2 × d2 𝑝1, 𝑝2

Suppose decrease 𝑝1 (make item 1 cheaper)

Then:

• Earn less money in yellow region ↓

• Yellow region becomes bigger

White region becomes smaller ↑

Blue region becomes smaller ↓



Demand estimation with multiple items

• With a single item, we suggested machine learning approach to 
estimate: d p, x ≝ 1 − 𝐹𝑝|𝑋 𝑝 𝑋 = 𝑥)

• Assume we have user 𝑖 with covariates 𝑥𝑖

• Now, would need to estimate d1 𝑝1, 𝑝2, 𝑥𝑖  and d2 𝑝1, 𝑝2, 𝑥𝑖

• Gets very hard, very quickly

• Approach 1: Use a multi-class classification algorithm 𝑔 𝑝1, 𝑝2, 𝑥𝑖
[Buy nothing, buy item 1, buy item 2] and then extract class probabilities
(sci-kit learn: use predict_proba with any multi-class classifier)

• Approach 2: (Extend idea from previous class)
• Use user and item vectors, i.e., p1, p2, 𝑢𝑖 ⋅ 𝑤item 1, 𝑢𝑖 ⋅ 𝑤item 2



Sidenote: Substitutes and complements

• So far: motivation -- we have multiple products to sell, that appeal to 
different customers

“cheaper” and “more expensive” product

• Items are “substitutes”: people only buy at most one kind of item

• Sometimes, items are “complements” – buying one item makes the 
other item more attractive
• Soda + popcorn at movie theater

• iPhone and Macbook and Apple Watch and Apple TV and …

• Then, reducing one item’s price might induce you to buy more overall
• An item is a “loss leader”



Putting pieces together: class 
competition



So far we’ve covered

• Recommendation systems
• Given past user and item data, predicting how much each user would like 

each item

• How to turn these predictions into recommendations (with capacity 
constraints)

• Pricing
• Single item revenue maximization

• Estimating demand at each price, potentially with covariates
• Potentially with multiple items, and with using user and item vectors

• Pricing over time with capacity constraints

• Pricing multiple items



Overview: Real-life algorithmic pricing

• You and a single competitor (your classmates) each are selling two 
types of items, Book A and Book B. 
• (Potentially: suppose you get K copies of each item every 10 steps)

• A customer walks in and you observe some personal data 
• Just demographic covariates

• Demographic covariates & user vector trained using their past experiences

• You and your competitor post prices for each item

• The customer at most 1 item and leaves

• Repeat for many customers over time



Basic case

• For now, let’s ignore competition

• For each user, you have either just demographic covariates 𝑥𝑖 or also 
a trained user vector 𝑢𝑖  from their past interactions on your site

• You would predict demand for each item, 𝑑1(𝑝𝐴, 𝑝𝐵 𝑥𝑖 , 𝑢𝑖) and 
𝑑2(𝑝𝐴, 𝑝𝐵 , 𝑥𝑖 , 𝑢𝑖) for each set of prices (𝑝𝐴, 𝑝𝐵)
• Your choice on how to estimate this demand

• What do you do for customers with no user vector 𝑢𝑖?

• Set prices to maximize your expected revenue



Complication 1: Capacity constraints

• Now, have K copies of each item for each T=10 customers. 

• Now, the price that you set for each item should depend on 
opportunity cost: what if you can sell that item to a different 
customer in the future?

• 3-d Bellman equation: time, capacity of Book A, capacity of Book B

• Set up your Bellman equation:
Vt,k𝐴,k𝐵

= 𝐴 + 𝐵 + 𝐶

A: If I sell Book A today: Revenue today, plus future revenue from 1 less Book A

B: If I sell Book B today : Revenue today, plus future revenue from 1 less Book B

C: If I don’t sell anything: future revenue from same number of copies



How to calculate future revenue?

• As before, future revenue depends on future prices that you set

• …Think about prices you’d set on last day T-1=10
• For each combination of capacities left k𝐴, k𝐵

• Complication: on day t < T − 1 you don’t yet know the customer 
𝑥𝑇−1, 𝑢𝑇−1 that will show up on the last day T − 1!
• You only know customer who has shown up on day t

• When calculating future expected value Vt+1,k𝐴,k𝐵
, you need to 

consider the distribution of customers that could show up
• Use training data to consider possible customers that could show up
• Then calculate the prices that you would show each of them



Complication: Competition

• You and your opponent both do the same thing, and calculate the 
exact same prices 𝑝𝐴, 𝑝𝐵 at the current time step

• Your opponent is clever, and so decides to undercut you slightly, and 
so sets prices 𝑝𝐴  − $0.01, 𝑝𝐵 − $0.01

• …but you’re cleverer, and know your opponent will do this, and so 
you set prices 𝑝𝐴  − $0.02, 𝑝𝐵 − $0.02

• There’s now a game theory component: you need to anticipate what 
your opponent will do when setting prices

• More complicated: it’s a repeated setting
• You can learn parameters for how your opponent behaves



Questions?
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